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Abstract. A Eurocrypt 2013 paper “Security evaluations beyond com-
puting power: How to analyze side-channel attacks you cannot mount?”
by Veyrat-Charvillon, Gérard, and Standaert proposed a “Rank Esti-
mation Algorithm” (REA) to estimate the difficulty of finding a secret
key given side-channel information from independent subkeys, such as
the 16 key bytes in AES-128 or the 32 key bytes in AES-256. The lower
and upper bounds produced by the algorithm are far apart for most key
ranks. The algorithm can produce tighter bounds but then becomes ex-
ponentially slower; it also becomes exponentially slower as the number
of subkeys increases.

This paper introduces two better algorithms for the same problem. The
first, the “Extended Rank Estimation Algorithm” (EREA), is an exten-
sion of REA using statistical sampling as a second step to increase the
speed of tightening the bounds on the rank. The second, the “Polynomial
Rank Outlining Algorithm” (PRO), is a new approach to computing the
rank. PRO can handle a much larger number of subkeys efficiently, is
easy to implement in a computer-algebra system such as Sage, and pro-
duces much tighter bounds than REA in less time.

Keywords. symmetric cryptography, side-channel attacks, ranking

1 Introduction

Given an implementation which uses a cryptographic protocol that processes
parts (subkeys) of a private key (master key) k∗ separately and independently,
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one can try to derive information about the subkeys by looking at information
that the implementation leaks through side channels. For instance, in AES-
128 [12], we view the 128-bit master key as being divided into 16 byte-sized
subkeys that are separately processed in S-boxes. These bytes can be targeted
independently by a side-channel attack (SCA, see e.g. [4,5,9]). Common side
channels are power consumption, electromagnetic radiation and acoustics. An
attacker measures traces of these channels: the amount of power, radiation or
noise that the implementation emits at points in time during the measurement.

The next step is to extract information from these measurements. By use of
statistical methods the measurements are converted into posterior probabilities
for each of the values of each of the attacked subkeys. To come back to AES-128,
an attack of an S-box leads to a probability distribution of the 256 possibilities
for the subkey byte that was processed in that S-box. If we are able to get these
distributions for multiple subkeys, then this information can be combined to find
the master key: Calculate which master key has the highest probability subkeys
and check if this was the key used in the implementation. If it was not, check
the next most likely one, and the next, etc.

In this context the rank of a key is a natural number which indicates how
many keys have posterior probabilities higher than it. A key with rank 10 means
the results of a particular SCA indicate 9 keys are more likely to have been used
in the implementation. An attacker using the results would check at least 9 other
keys before trying that one.

To determine which master keys are the most likely ones, we can use key
enumeration algorithms [8,6,13,17]. These algorithms exploit the partial key in-
formation to recover the used key as fast as possible. They take the subkey
probability distributions (from, for instance, an SCA) and then output master
key candidates in order of their posterior likelihoods.

A security evaluation should determine whether an implementation is secure
against such an attack. The goal of an evaluation is to determine whether a
cryptographic implementation is secure against the computing power of mali-
cious attackers by quantifying how much time, what kind of computing power
and how much storage a malicious attacker would need to recover the master
key used. For some types of attacks evaluations are straightforward: for mathe-
matical cryptanalysis such as linear and differential cryptanalysis [11,3] concrete
results are known. In many papers there are mathematical proofs for the number
of ciphertexts that are needed to recover key bits with a high success rate.

Exact formulas for the probability of an attacker breaking the system, or the
number of plaintexts, ciphertexts or power traces needed to break a system are
however not readily available for other types of attacks. Side-channel attacks are
among these attacks. If one gets measurements on the subkeys of a master key,
there are multiple methods of converting them into probabilities. On top of this
there are multiple methods to combine the results on the subkeys into results
on the master keys. After getting results from a side-channel attack however,
evaluations need to reach conclusions on the time and hardware an attacker
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would need to break the implementation. Difficulties in such an evaluation are
discussed in, e.g., [14] and [15].

The key enumeration algorithms seem to give the conclusions: If it is possible
to enumerate a key with a certain key enumeration algorithm using the poste-
rior probabilities of a certain SCA, then the encryption method was not secure.
Otherwise it is secure against this particular attack. The problem is that the
feasibility of enumeration is dependent on how the SCA measurements are con-
verted into probabilities, what enumeration algorithm is used and the computing
power at the attacker’s disposal. An attacker with a laptop can enumerate a lot
fewer keys than one with a million dollar computer cluster.

In [18] a “Rank Estimation Algorithm” (REA) was presented by Veyrat-
Charvillon, Gérard and Standaert, offering a solution for this problem. While a
key enumeration algorithm gives the exact rank for all keys that are enumerated
during the experiment time, REA gives an estimate for the rank of a key, even
if it is not enumerable. The purpose of REA is to determine bounds for how
many master keys have a higher probability than k∗ in the SCA results. This
has two advantages for security evaluations: (1) obtaining bounds for keys that
are beyond the evaluator’s computing power; (2) saving the trouble of investing
computer power in key enumeration.

REA works only if the subkeys attacked are independent. For a setting
with discrete-logarithm based schemes it is useful to estimate ranks also in the
case that the attacked subkeys are dependent. In [10] a method is described
to estimate the rank in such a setting. This paper however will focus on the
independent-subkey case.

In this paper we introduce two new algorithms for rank estimation. The first
is the “Extended Rank Estimation Algorithm” (EREA), which uses statistics to
give a confidence interval within the bounds resulting from REA. The second
is the “Polynomial Rank Outlining Algorithm” (PRO), which uses polynomial
multiplication to calculate lower and upper bounds for the ranks of all keys;
fast methods for polynomial multiplication have been researched thoroughly.
REA is an iterative algorithm, where in each iteration the bounds for the rank
are improved; PRO is a non-iterative algorithm, where the tightness of bounds
depends on an accuracy parameter chosen in advance.

The remainder of this paper is divided as follows. In Section 2 we review side-
channel attacks and introduce notation. In Section 3 we generalize the scope
of the rank estimation problem and give the basic problem we want to solve.
In Section 4 we review how this problem is solved by REA. Sections 5 and 7
introduce EREA and PRO respectively; Sections 6 and 8 present experimental
results. Section 9 compares REA, EREA, and PRO.

Priority dates and subsequent work. The third author’s master’s thesis [16]
in May 2014 included a description of EREA. A draft of this paper was submitted
in September 2014 as the formal publication of both EREA and PRO.

In November 2014, Glowacz, Grosso, Poussier, Schueth and Standaert [7]
posted an independent paper announcing results similar to the results achieved
by PRO. We have not yet compared the details of the results.
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Also in November 2014, Ye, Eisenbarth and Martin [19] presented an alter-
native approach to the evaluation of side-channel security. The space of all keys
K is searched for the smallest set wσ of keys such that the probability of success
is equal to a predefined success rate σ. The rank in this case is then estimated
to be equal to the expected number of keys an attacker would search:

∑
σ σ ·wσ.

This method derives a realistic bound of what an adversary can do, but it is less
accurate than PRO.

2 Review of side-channel attacks and key enumeration

Side-channel attack results. The techniques in this paper do not rely on
the specifics of the side-channel attack being performed or on the cryptographic
protocol under attack. They do however assume a certain structure of the results
of such an attack. We assume that the protocol uses the secret key split up
into subkeys and that the side-channel attack makes use of this structure, in
particular we assume that the subkeys are attacked independently. For instance,
in AES-256, a common attack is to attack the first 32 S-boxes in the substitution
layers. These 32 S-boxes independently process 32 byte-sized subkeys of the AES-
256 key. We call the complete key used in the device under attack the master
key.

For ease of exposition and notation we assume that for each subkey there are v
possibilities, but the algorithms can be generalized to subkeys of unequal size. We
call the number of subkeys the dimension d of the attack. Again, the algorithms
can be rewritten to incorporate some dependencies between the subkeys, but it
is easier to explain the concepts without them. We assume the result of an SCA
will assign likelihood values to all v subkeys of each of the d dimensions. From
these values we can derive which subkeys are more likely a part of the master
key used in the implementation according to the measurements. For example,
a typical Differential Power Analysis attack [9] against AES-256 would produce
likelihood values for each of the 256 possibilities for subkey 0, likelihood values
for each of the 256 possibilities for subkey 1, and so on through subkey 31.

We convert these values assigned to each subkey to probabilities. There are
multiple ways in which this can be done. In [13] for instance the authors sim-
ply scale the values for each of the d subkeys: Each of the v subkey values is
divided by the maximal value of that subkey to normalize the results. In [18] it
is proposed to create a stochastic model for each key and then use a Bayesian
extension to create a probability mass function. In this paper we will assume
similar scaling to [13], but we instead divide by the sum of the subkey values, to
have the probabilities of the v possibilities of a subkey add up to 1.

These assumptions lead to the following notation. The collection of all possi-
ble master keys is called the key space K. A master key k ∈ K can be rewritten
as the concatenation of its d subkeys. Each of these representations has a likeli-
hood probability derived from the SCA measurements. For REA it is necessary
that the posterior probabilities are ordered per subkey. We will denote the prob-

ability of the j-th most probable choice for the i-th subkey by p
(j)
i . The j-th
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most likely choice for the i-th subkey is denoted by k
(j)
i . This means that key

k = k
(j1)
1 | . . . |k(jd)d has posterior probability p = p

(j1)
1 · · · · ·p(jd)d . We will see later

that we do not need this ordering for PRO. There we will make use of multisets,
instead of ordered lists.

We can now introduce the concept of a rank for key estimation attacks.
The rank of a key k, rank(k), is defined as 1 plus the number of master keys
that have a higher posterior probability than k. The rank of a key used in an
implementation indicates how secure it is against the performed attack. Note
that in this definition if we have more than one key with the same probability,
then they have the same rank, and as a consequence there are ranks that none of
the keys have. The rank here reflects the minimum effort an attacker would have
to do to recover the key. We could also define the rank as the number of master
keys that have a higher or equal posterior probability than k. This definition
states the worst case effort an attacker would have to do. We assume that the
number of keys with equal probabilities is small compared to the scale of ranks
and thus negligible, but the difference between these definitions should be noted.

If the rank of a key k∗ is high, then there are a lot of keys an attacker would try
before it. If it is high enough, then an attacker will exhaust his resources before
reaching the key. The exact definition of ‘high enough’ depends on the evaluation
target; e.g., Common Criteria level 4 requires security against a qualified attacker
meaning that 240 computation is fully within reach and ranks of used keys need
to be above 280.

Geometrical representation. To explain the algorithms in this paper, we will
use a graphical representation of the key space of which a simple case of d = 2
is depicted in Figure 2.1.

Fig. 2.1: A graphical representation of the key space
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In this figure we see two subkeys k1 and k2 along the axes of the graph. The
choices for them are both ordered by probability. In the x-y plane each square

uniquely represents a key k
(j)
1 |k

(i)
2 , which is the concatenation of two subkeys.

For this figure we include on the z-axis the probability of each key to illustrate
the gradual differences of probabilities in the space.

The blue key represents the key k∗ used in the implementation that was
attacked. The green keys are those with a higher probability than k∗, the red
those with a lower probability. These are respectively equal to the keys with
lower and higher rank than k∗.

Key enumeration. Now that we have all the ingredients we want to use them
to determine the rank of a key. We can look at this problem in two ways. The
first is black box key enumeration. Here we attack an implementation for which
we do not know the key that was used. To recover it we do a side-channel attack
and want to utilize the results to try keys in order of likelihood.

In the graphical representation this would mean starting at the top-left square
and using the corresponding key to decipher a ciphertext (or some equivalent
check that verifies the key). If this does not yield the desired results, then we
try squares one by one, in order of their probabilities until one corresponding
key does work. This would mean trying all the green squares, until we reach the
blue square, which will decipher the ciphertext. The rank of k∗ is then equal to
the number of keys we tried.

The difficulty in deciding which key to check next is that we have to compute
and store the probabilities of the keys that might be the next key. If we naively
continue to enumerate the number of possibilities grows and eventually becomes
too large to store. Smarter key enumeration algorithms were presented in [13]
and [17]; their goal is to work through the candidate keys in the best possible
way while keeping storage costs to a minimum.

In white-box rank estimation we know the correct key k∗ each time we run
the device or implementation and want to know how easy it would be on average
to find k∗ based on side-channel information. With “estimation” we mean we
want an interval which contains the rank of k∗ with a certain confidence level. Of
course we could take the same approach as in black box key enumeration. We do
a side channel attack on the implementation, apply the enumeration technique
of [13] or [17] to the results and count the number of steps until we reach k∗.
However, these approaches easily exhaust the available time and memory. In
the remainder of this paper we will first state the Rank Estimation Problem
and then look at algorithms that estimate the rank of a given key k∗ without
enumerating all the keys ranked higher (or lower).

3 The Rank Estimation Problem

We wish to estimate the number of keys with rank lower than a given key. To
make this more explicit we first discuss the underlying problem that needs to be
solved.
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Probability Product Problem. Given a multiset P of multisets S containing
reals in the open interval (0, 1), and given p∗, compute

count(P, p∗) =
∑

p∈
∏
S∈P S

1[p∗ <
∏
s∈p

s].

In this problem definition, multisets are unordered lists that can contain
duplicates. They will be discussed more extensively in Section 7. The vectors p
indexing the sum in the definition of the count function consist of one element
from each multiset S; the count function counts the number of these vectors
whose product of coefficients evaluate to a value higher than p∗. For large sets
P and S calculating count can become infeasible.

The Probability Product Problem is a generalization of the rank estimation
problem. For rank estimation the multiset P consists of d subkey probability
distributions S. Each distribution S is itself a multiset of probabilities for the
values of each subkey, which resulted from for instance a side-channel attack. The
other input p∗ is the probability of the master key k∗ used in the implementation.
The output count(P, p∗) is exactly the number of master keys that have a higher
probability than k∗ in the SCA results, i.e., the rank of k∗. In this setting we
refer to count(P, p∗) as rank(P, p∗) = rank(k∗).

Enumeration of all p with p∗ <
∏
s∈p s reveals the exact value of rank(P, p∗)

but is often too slow to be feasible. The remainder of this paper considers much
faster methods to determine tight lower and upper bounds for the rank function.
These algorithms are explained in the context of SCA results, but the reader
should keep in mind that they can also be applied to the more general form of
the Probability Product Problem.

4 The Rank Estimation Algorithm (REA)

The first rank-estimation algorithm was presented by Veyrat-Charvillon, Gérard
and Standaert in [18]. We explain their algorithm using the geometric represen-
tation from Section 2. As before, each of the d ordered subkey attack results
is represented by an axis in the d-dimensional space. Each (hyper)-square then
represents a key k.

This space has the nice property that for a point (key) with coordinates
(i1, . . . , id) the downwards induced box consisting of the points (i′1, . . . , i

′
d), with

i′j ≤ ij for j = 1, . . . , d, consists entirely of points whose corresponding key k′

has a rank lower or equal to that of k. Similarly, points (i′′1 , . . . , i
′′
d) with i′′j ≥ ij

for all j form an upwards induced box with higher ranked keys.
Now if we have a key k∗ of which the rank has to be estimated, we pick a

key k from the space and check whether pk ≥ p∗. If this is the case, then the
downwards induced box contains only keys with ranks lower than rank(k) and
therefore lower than rank(k∗). If this is not the case then the upwards induced
box consists of keys with rank higher than that of rank(k∗). The number of
grid points in this induced box can be determined, the points removed from the
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space and the estimate for the rank of rank(k∗) can be updated accordingly.
This process can be iterated as long as the bounds are not tight enough.

A hyperrectangle can be stored entirely by its two extreme squares. A hy-
perrectangle from which one induced box has been removed can be stored as the
difference of two hyperrectangles and requires storing three points. Removing
more induced boxes will make the space harder and harder to store. In [18] this
is solved by only storing hyperrectangles and differences of hyperrectangles. If
we want to remove more we first cut the difference of two hyperrectangles into
two pieces, at least one of which is a hyperrectangle. We then recursively repeat
the process on the two pieces. This algorithm is summarized in Algorithm 4.1.

Algorithm 4.1: Rank Estimation Algorithm (from [18])

Data: Ordered subkey distributions P = {p(j)i }1≤i≤d,1≤j≤v and probability p∗

of the used key k∗

Result: An interval I = [I1; I2] containing rank(P, p∗)
begin

L ← {[1; v]d}
I ← [1; vd]
while L 6= ∅ do

V ← maxV ∈L |V |
L ← L \ V
if V = hyperrectangle then

pick point in V , carve corresponding hyperrectangle from V and
update V ; L ← L ∪ V
Update I

else
Split V into V1 and V2

L ← L ∪ V1 ∪ V2

return I

The points are picked by a (large step) hill-climbing algorithm. The difference
of two hyperrectangles is split to create an as-large-as-possible hyperrectangle.
For further details on the workings of REA we refer the reader to [18]. In Algo-
rithm 4.1, L can be seen as the d-dimensional graphical representation and I is
the interval of ranks. It should be noted that this algorithm as presented here
will not terminate producing the exact rank rank(k∗) in reasonable time for the
key spaces we are interested in. We found that it will find an exact rank for an
implementation of DES, but for non-extreme values in AES-128 this is already
infeasible. However the algorithm can be aborted before an exact rank is found
and I gives bounds for rank(k∗). The longer the algorithm is run, the smaller
the size of I and the better the bounds. We present tightness bounds resulting
from the Rank Estimation Algorithm in Section 6.
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5 Extended Rank Estimation Algorithm (EREA)

An advantage of the Rank Estimation Algorithm is that when we stop the algo-
rithm we not only are left with an estimate for rank(k∗), but we also have the
remaining space of keys stored. In this section we present our first result: the
Extended Rank Estimation Algorithm (EREA) which derives extra information
from this remaining key space by way of a statistical extension.

Statistical algorithms were briefly considered in [18] as easy but inefficient
ways to estimate the rank of a key. These algorithms sample random keys and
obtain an estimate for the rank by computing how many of the sampled keys have
a higher posterior probability than k∗. The resulting bounds are too rough to
obtain any meaningful result for the algorithms (AES-128 and LED) considered
in [18].

We propose to combine REA with statistical algorithms as a post processing
stage: After running REA we draw n random points from the remaining space
and for each of these calculate the probability of the corresponding key k and
compare it to p∗. This tells us whether the drawn key has a higher or lower rank
than k∗. By keeping track of the quotient of higher and lower ranked keys, we
can create a (1 − δ)-confidence interval for rank(k∗). Different values for δ can
be chosen by the evaluator to suit his needs.

This extension is summarized in Algorithm 5.1. In this algorithm we run REA
for time t before stopping it and then sample n keys; B denotes the binomial
distribution.

Algorithm 5.1: Extended Rank Estimation Algorithm (EREA)(from [16])

Data: Subkey distributions P = {p(j)i }1≤i≤d,1≤j≤v, probability p∗ of the actual
key, time t, sample size n, and confidence values δ

Result: An interval I = [I1; I2] containing rank(P, p∗) with 100% confidence
and intervals Iδ = [Iδ0 ; Iδ1 ] containing rank(P, p∗) with (1− δ) · 100%
confidence

begin
(L, I)← REA(P, p∗, t)
for V ∈ L do

Sv ← Sample size nV = B
(
n, |V ||L|

)
from volume V

S ←
⋃
V ∈L Sv

Compute confidence intervals from I, S and δ’s
return I and the Iδ

For large n the sampling converges to drawing n|V |/|L| samples from each
box V , which is also what we would expect if we were drawing uniformly from the
entire remaining space. We note that the allotted sample size input is almost
never the exact number of samples drawn, but serves as an indicative order
size of the sample. For our implementation we included one extra step before
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the sampling: REA represents carved boxes as differences of two boxes which
makes drawing samples from them more complicated. We solved this problem
by splitting the carved boxes up into hyperrectangles.

6 Experimental results for EREA

We took DPA attack results from an attack performed by Brightsight BV. on a
smart card using AES-128 and derived probabilities for each dimension/subkey
combination by scaling the values of their highest peak. We ran the algorithms on
differently ranked keys chosen from the DPA results to be logarithmically spread
over the interval [20, 2128] and were determined experimentally to have rank
approximately 20, 24, 221, 227, 234, 239, 242, 246, 248, 253, 257, 260, 266, 276, 280, 283,
292, 297, 2102, 2107, 2112, 2119, 2125, 2127 and 2128. Of these keys the actual key
used in the smart card during the attack was one of rank ∼ 2125. We ran the
algorithms on a single core of an AMD FX-8350 Vishera 4.0GHz CPU of the
Saber cluster [2].

For comparison we first ran REA on our results. To do this we used the
C++ code that was published with [18]. The quality measure chosen by [18] is
the difference in the log2 upper and lower bounds of the intervals obtained after
a certain running time. This is the same as log2(I2/I1), i.e., it gives a measure
on the ratio of the interval bounds. Figure 6.1 presents the average results over
20 executions. This figure shows the same effect for the different running times
as Figure 5 in [18] but our computations take longer; this is easily explained by
us using different hardware.

Fig. 6.1: The difference between the log2 upper and lower bound for different
running times of REA applied to AES-128.

These running times ignore a preprocessing phase. In this phase some of the
subkeys are combined to make the graphical representation lower dimensional,
e.g., for AES-128 the attack uses d = 6. This increases the convergence of the
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algorithm to a speed where the algorithm becomes useful, but the preprocessing
took us over 40 seconds for AES-128 attack results.

The graph shows that log2(I2/I1) is largest for keys with ranks around 280.
This makes sense because these keys are situated in the center of the initial
hyperrectangle so that the carving can never remove particularly large boxes
and the algorithm needs to process several hyperrectangles, making it take more
iterations. Also note that for large ranks the ratio I2/I1 is relatively small,
without decreasing the interval size itself because the same ratio corresponds
to a much larger difference I2 − I1.

For the experiments for EREA we considered the worst case for REA, a key
of rank ∼ 280. For particularly low- or high-ranked keys REA will efficiently
decrease the ratio of the interval bounds so that sampling is less necessary;
for keys in the range of 250 (broken) to 2100 (unbroken) the sampling is most
important. We ran REA followed by the statistical sampling. The results are in
Figure 6.2.

Fig. 6.2: The bounds resulting from the Extended Rank Estimation Algorithm.

In this graph the black (outermost) lines display the bounds resulting from
REA. These were induced from the bounds checked at t = 1, 5, 10, 50, 100,
and 500 seconds. We then ran EREA, stopping with the REA part after t =
1, 5, 10, 50, or 100 seconds. The other lines in the graph show the resulting 99.9%
confidence intervals.

The main observation is that indeed sampling reduces the interval by such a
factor that REA would take unmountably long to get the same results. We can
also see that the sampling takes longer after running REA longer. This is due to
the much larger number of boxes resulting from REA: Running the algorithm
longer means the remaining space gets cut up into more boxes, which in turn
means that we have to iterate through a longer queue of boxes when sampling.
Hence, the best results are obtained by running REA for only a short time (in
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this example 5 or 10 seconds) and then switching over to the statistical sampling
method. Better implementations of REA might shift the exact cut off but do not
change the general result that sampling leads to significant time savings once
the sampling range is small enough.

7 Polynomial Rank Outlining Algorithm (PRO)

This section presents our new Polynomial Rank Outlining Algorithm (PRO)
that computes arbitrarily tight lower and upper bounds on key ranks.

We draw an analogy between computing the rank of a key k∗ and computing
a number-theoretic function traditionally called Ψ(x, y). By definition Ψ(x, y)
is the number of y-smooth integers ≤x; here a y-smooth integer is an integer
whose prime decomposition contains no primes greater than y. The analogy is
easy to see: the number of y-smooth integers ≤x is the number of products
≤x of powers of primes ≤y; the rank of k∗ is the number of products >pk∗ of
subkey probabilities, i.e., the number of products <1/pk∗ of reciprocals of subkey
probabilities.

PRO is inspired by an algorithm from Bernstein [1] that computes arbitrarily
tight lower and upper bounds on Ψ(x, y). The rest of this section explains how
PRO works.

Ingredients of PRO. We begin by introducing the concepts used in PRO, in
particular the concepts of multisets and generalized polynomials. The latter is
similar to the concept of a generalized power series used in [1], but is simpler
since it has only finitely many terms.

A multiset is defined as a generalization of a set. Where in a set each element
can appear only once, there can be multiple instances of identical members in a
multiset. There is no standard, concise and unambiguous notation for multisets.
In this paper we will use the notation of a sum of multisets of 1 element. A
multiset M containing the elements a, b, b, c will be denoted as {a}+{b}+{b}+
{c}.

As an example of a multiset, consider a subkey that has values 0, 1, 2, 3, 4 with
probabilities 1/12, 1/2, 1/12, 1/12, 1/4 respectively. The multiset of probabilities
is the multiset {1/12}+ {1/2}+ {1/12}+ {1/12}+ {1/4}, which is the same as
the multiset {1/12}+{1/12}+{1/12}+{1/4}+{1/2}. The multiplicity of 1/12
in this multiset is 3, the number of occurrences of 1/12.

We can then also define the addition of two multisets. Let M1,M2 be two
multisets, then

M1 +M2 =
∑

m1∈M1

{m1}+
∑

m2∈M2

{m2}

is the addition between these two multisets. The multiplicity of m in M1 +M2

is the sum of the multiplicity of m in M1 and the multiplicity of m in M2. We
also define the product between multisets as follows:

M1 ·M2 =
∑

m1∈M1,m2∈M2

{{m1}+ {m2}} .
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The product thus consists of multisets of size 2 with combinations of an
element in M1 and an element in M2. The multiplicity of {{m1}+ {m2}} in
M1 ·M2 is the product of the multiplicity of m1 in M1 and the multiplicity of
m2 in M2. The multiplication can easily be extended to the product of more
multisets.

For example, consider a second subkey that has values 0, 1, 2 with proba-
bilities 1/3, 1/2, 1/6 respectively. The multiset M2 of probabilities is {1/6} +
{1/3}+ {1/2}. The sum M1 +M2, where M1 is the previous example {1/12}+
{1/12}+{1/12}+{1/4}+{1/2}, is {1/12}+{1/12}+{1/12}+{1/6}+{1/4}+
{1/3}+ {1/2}+ {1/2}. The product M1 ·M2 is the following multiset, where for
conciseness we abbreviate 1/2 as 2 etc.:

{{12}+{6}}+ {{12}+{6}}+ {{12}+{6}}+ {{4}+{6}}+ {{2}+{6}}
+ {{12}+{3}}+ {{12}+{3}}+ {{12}+{3}}+ {{4}+{3}}+ {{2}+{3}}
+ {{12}+{2}}+ {{12}+{2}}+ {{12}+{2}}+ {{4}+{2}}+ {{2}+{2}}

We emphasize that order does not matter, and that this is the same multiset:

{{12}+{6}}+ {{12}+{6}}+ {{12}+{6}}+ {{12}+{3}}+ {{12}+{3}}
+ {{12}+{3}}+ {{12}+{2}}+ {{12}+{2}}+ {{12}+{2}}+ {{6}+{4}}
+ {{6}+{2}}+ {{4}+{3}}+ {{4}+{2}}+ {{3}+{2}}+ {{2}+{2}}.

Lastly we note that one can create multisets of multisets just like one can create
sets of sets. The product of two multisets is an example of this. Given multisets
M1, . . . ,Md, one can build the multiset M =

∑
i=1,...,d {Mi} containing those

d multisets. Note that by definition M is unordered and can contain duplicate
multisets.

A generalized polynomial is a function F : R→ R such that F (r) 6= 0 for only
finitely many r ∈ R. The reader should visualize F as the sum

∑
r∈R F (r)xr,

where x is a formal variable. Generalized polynomials are added, subtracted,
and multiplied as suggested by this sum: the sum F + G of two generalized
polynomials F and G is defined by (F + G)(r) = F (r) + G(r), the difference
F −G is defined by (F −G)(r) = F (r)−G(r), and the product FG is defined
by (FG)(r) =

∑
s∈R F (s)G(r − s).

The distribution of a generalized polynomial F , denoted as distrF , is the
function that maps h to

∑
r≤h F (r). Distributions satisfy several useful rules:

(distr(−F ))(h) = −(distrF )(h),

(distr(F +G))(h) = (distrF )(h) + (distrG)(h),

(distr(FG))(h) =
∑
s∈R

F (s)(distrG)(h− s).

Lastly, we define a partial ordering ≤ on generalized polynomials: we say
that F ≤ G if (distrF )(h) ≤ (distrG)(h) for all h ∈ R. If F1, . . . , Fn, G1, . . . , Gn
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satisfy Fi ≤ Gi and Fi(r) ≥ 0 and Gi(r) ≥ 0 for all i then
∏n
i=1 Fi ≤

∏n
i=1Gi;

see [1]. We will use this result in the next section.

Outlining the ranks. Recall that d is the dimension of the attack, i.e., the

number of subkeys that were attacked; that k
(j)
i is the jth most likely value for

the ith subkey; and that p
(j)
i is the probability of this value.

In the Polynomial Rank Outlining Algorithm (PRO) we can simplify this
notation. The ordering of the probabilities was important for REA, because
of its use of a geometrical representation. With PRO we do not need ordered
probabilities and therefore we will represent the probabilities resulting from the
SCA as multisets. More specifically, as in Section 3, we assume that an attack
on d independent subkeys results in a multiset P of d multisets S of subkey
probability distributions. Given the probability p∗ of the implemented key k∗

we want to bound the function:

rank(P, p∗) =
∑

p∈
∏
S∈P S

1[p∗ <
∏
s∈p

s].

PRO separately creates lower and upper bounds for this function. We will
explain how to calculate the upper bound; the lower bound is constructed simi-
larly. We first define the following functions on probabilities. Let α be a positive
real number; we will obtain tighter bounds by increasing α, so we call α the
“accuracy parameter”. The function ·̃ : (0, 1)→ R is defined as:

p̃ = α · log2(1/p),

and the function · : (0, 1)→ Z is defined as:

p = bα · log2(1/p)c = bp̃c .

We now have the nice property that if the probability p is the product of the
subkey probabilities in p ∈

∏
S∈P S then

p̃ = α · log2 (1/p) ≥ bα · log2 (1/p)c ≥
∑
s∈p
bα · log2 (1/s)c . (1)

With these definitions in mind we define a generalized polynomial FP as follows:

FP =
∑
p∈J

xp̃ =
∏
S∈P

∑
s∈S

xs̃,

where J =
∑

p∈
∏
S∈P S

{
∏
s∈p s} is the multiset of all master key probabilities.

In other words, FP is a generalized polynomial which contains one term xp̃ for
each master key with probability p.

We have now rewritten the problem of counting probabilities larger than p∗ to
finding the number of terms in a generalized polynomial that have an exponent
smaller than p̃∗: Using the notation introduced above, rank(k∗) = rank(P, p∗) =
distr(FP)(p̃∗). We do not mean to suggest that counting these terms one by one
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is feasible: for example, for a key of average rank in AES-128, if we neglect equal
exponents, this would mean counting ∼ 2127 terms, which is infeasible. To solve
this problem we will create a generalized polynomial G meeting three goals: first,
G has far fewer terms than F ; second, G ≥ F ; third, the gap between G and F
becomes arbitrarily small as α increases. We define G as follows:

GP(x) =
∏
S∈P

∑
s∈S

xs.

Note that this consists only of integer powers of x. Now, because of (1),
∑
s∈S x

s ≥∑
s∈S x

s̃, so GP ≥ FP .
In particular, (distrGP)(p̃∗) ≥ (distrFP)(p̃∗) = rank(P, p∗). We have thus

created an upper bound for the rank of k∗. Similarly, if we replace the function ·
by a function, · : (0, 1)→ Z with p = dp̃e, we obtain a lower bound for rank(k∗).
How tight these bounds are, will be discussed below.

PRO is stated in Algorithm 7.1.

Algorithm 7.1: Polynomial Rank Outlining Algorithm (PRO)

Data: Subkey distributions P, the key probability p∗ and an accuracy
parameter α

Result: An interval I = [I1; I2] containing rank(P, p∗)
begin

GP(x)←
∏
S∈P

∑
p∈S x

p

HP(x)←
∏
S∈P

∑
p∈S x

p

I1 ← distrHP(p̃∗)
I2 ← distrGP(p̃∗)
return I

Margin of error. Now that we have shown that we can create a bound, we
can analyze how tight it is. The size of the interval resulting from Algorithm 7.1
is directly dependent on α. The larger α is, the fewer distinct values s and s,
where s ∈ S and S ∈ P, will evaluate to the same integer and the more distinct
monomials G and H will have. We will show how to derive an upper bound for
the upper bound. A lower bound for the lower bound is derived analogously. Let,
for each S ∈ P,

εS = min
s∈S

(s/s̃), (2)

then we can define:

E =
∑
S∈P

{∑
s∈S
{εS · s̃}

}
. (3)

Then, because it holds that

∀S ∈ P : ∀s ∈ S : εS · s̃ ≤ s,
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it follows that ∏
E∈E

∑
e∈E

xe ≥
∏
S∈P

∑
s∈S

xs.

Let p∗ =
∏
s∈p s for some p ∈

∏
S∈P S, then we define p∗ε =

∏
s∈p s

εS , where the
εS are such that s ∈ S. Then distr(FP)(p̃∗ε ) ≥ distr(GP)(p̃∗), which means that
we have an upper bound for the rank upper bound. Similarly we can replace the
min in Equation 2 by a max and the functions · in Equations 2 and 3 by · , to
find a lower bound of distr(FP)(p̃∗ε ) for the rank lower bound.

Computing this upper bound for the upper bound is expensive. However, we
can derive information from this upper bound without actually computing it: we
simply compute the values εS . We see that these values are directly dependent
on the accuracy parameter α.

lim
α→∞

εS = lim
α→∞

min
s∈S

(s/s̃) = lim
α→∞

min
s∈S

bα · log2 (1/s)c
α · log2 (1/s)

= 1.

The error margin does not give an indication of how many keys the interval
contains, but it does give an indication of what probability the keys in the
interval have. For the p∗ defined above the rank interval computed by PRO will
at most contain all ranks of the keys with probabilities between p∗ε and p∗ε .

We will see in Section 8 that in practice the bounds of the interval are closer
to distr(FP(x)) than to the maximum error bounds.

PRO in the graphical representation. In Section 4 we explained REA using
the geometrical representation seen in Figure 2.1. We can use this 2-dimensional
representation to visualize the bounds produced by PRO. We again take the
squares representing the keys but now we color them a bit differently. The blue
key k∗ with probability p∗ still represents the key used in the attack. The red
area are the keys k for which it holds that bα log2 (1/s1)c+ bα log2 (1/s2)c > p̃∗,
where s1 and s2 are the probabilities of the subkeys used. The green area are the
keys k for which it holds that dα log2 (1/s1)e + dα log2 (1/s2)e < p̃∗. The grey
area consists of the remaining keys. An example of this is shown in Figure 7.2.
To give an upper bound for the rank of k∗ we want to count the number of
keys in the green and grey areas. This is however infeasible for high key ranks,
so we simplify the space to speed up this process. By combining subkeys that
are close to each other, where the definition of close is dependent on α, we can
count boxes filled with a known number of keys. In Figure 7.3 we see this for
our previous example, using the value α = 4.

Note that due to the inversion of the probabilities in the algorithm, the
‘mountain’ structure of the key space is also inverted. To determine bounds for
the rank, we have to count the keys in the non-red boxes. We compute a lower
bound by counting (boxes of) green keys.

In this geometrical representation we also see the distance between the lower
and upper bound as the grey area. This is the area we estimate with the error
ε. The larger α is, the smaller the grey area is and the tighter our bounds are.
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Fig. 7.2: Geometrical representation of the key space with the grey area.

8 Experimental results for PRO

We ran PRO for the same attack results and keys considered in Section 6 using
an implementation in Sage. In Figure 8.1 we see the resulting log-difference in
bounds for some values of α, as well as the time it took.

The time it takes to calculate the bounds scales with the accuracy parameter.
The log-difference between the lower and upper bound seems to decrease by
approximately the factor by which we increase the accuracy parameter, with the
exception of the very low ranks. This is similar to the REA results where the
keys with low rank also behaved more erratically. The slight overhead for the
other ranks is mostly the time to count the coefficients of the polynomial.

We can adapt Algorithm 7.1 a bit to give a different representation of the
results by inputing the smallest probability master key produced by the side-
channel attack for p∗ and computing G and H not only for p̃∗, but also for all
values of p. We can then convert these integers back to ranges of probabilities.
For our experiments with α = 4, 16, 64 this resulted in Figure 8.2.

We see that the higher the value of α, the smoother the graphs are. A higher
α means less probabilities fall into the exponent of one term of the polynomial.
PRO’s ability to create such a graph for all probabilities is unmatched by REA.
REA can only do evaluations for one key at a time.

We now compare the results of PRO with the REA results from [18]. The
first major difference is the overall speed. Even after 100 seconds the average
log difference between the upper and lower bound for REA is above 4. With an
accuracy parameter of α = 29, which means a running time of only 7 seconds,
all our tested keys had a log distance below 4.

The shape of the graph is also a major difference. While the most ‘difficult’
keys for REA were the ones with rank ∼ 280, for the PRO algorithm the estimate
is the least accurate (in the log distance) for the lowest ranks. This is explained
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Fig. 7.3: Simplified geometrical representation using α = 4.

Fig. 8.1: The difference between the log2 upper and lower bound for different
values of α.

by the methodologies of the algorithms. As stated before, for REA the most
difficult ranks are those in the middle of the graphical representation. For PRO
the lower ranked keys are represented by just a few terms of the power series.
We might need to choose a rather high value for α for these keys to be spread
across different polynomial terms which improves the bounds.

The new method also seems to suffer only negligibly from the decline in
convergence that we see in REA. With the old method initial convergence is very
fast; large boxes can be cut from the graphical representation. After this first
phase however the space starts to consist of more and more smaller and smaller
boxes. This means that less can be cut after each iteration of the algorithm.
In PRO the desire for a more accurate bound translates into choosing a higher
accuracy parameter. If we assume uniformly spread probabilities and we double
α then the grey area in Figure 7.2, which consists of keys bounded by floors and
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Fig. 8.2: Graphical representation of all side-channel results.

ceilings of α log2(1/pi), will decrease as the grey boxes get split up and change
color. Of course the keys are not uniformly spread and the convergence will thus
not be constant, but it will not stagnate as much as for the rank estimation
algorithm.

We move on to experiments for the error bound of our bounds. For a key of
rank ∼ 280 the results are shown in Figure 8.3.

Fig. 8.3: The estimated error versus the actual bound for a key with rank(k) ∼
280. Here lb means the lower bound and ub the upperbound.

We see that using error from Equation (3) results in pretty wide margins for
the bounds found by PRO. We therefore reran our test replacing the maximal
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and minimal error in the calculations by the average error. This resulted in a
much better approximation of the bounds, but we can see these are no longer
strict lower and upper bounds for the interval resulting from PRO. It might
however be a better indication for an evaluator of which accuracy parameter α
he should take to reduce his running time.

We can now compare the REA results to the results of the new algorithms.
To this end we have graphed comparable timescales for all the algorithms in
Figure 8.4.

Fig. 8.4: The log difference between the bounds of REA (black), EREA (red)
and PRO (blue). Left: Runtimes with sub-10-second performance; ∼ 7s. for
PRO with α = 29), ∼ 8s. for EREA with 5s. REA/220 samples and 10s. for the
REA. Right: Runtimes with sub-2-minute performance; ∼ 106s. for PRO with
α = 213), ∼ 108s. for EREA with 100s. REA/28 samples and 106s. for the REA.

These results imply that PRO outperforms REA for most of the possible
ranks. For the ranks where REA works better, it is unlikely that one would use
an algorithm to derive the rank in the first place, because it will be clear that
the implementation is broken (the subkeys of k∗ all have very high probability
and the key can be enumerated within a few seconds).

Finally we investigate the effect of the number of subkeys on the running
time and the bounds produced by PRO. To do this we pick uniformly random
probabilities for byte-sized subkeys and look at the time it takes PRO to con-
struct the bounds for the key with the highest rank. This is the key for which
the most work needs to be done by PRO, and as a side effect produces bounds
for all lower-ranked keys. The resulting time for PRO is shown in Figure 8.5.
The tightness of the PRO bounds is shown in Figures 8.6 and Figure 8.7 for keys
of two different ranks, as discussed below.

Sage automatically uses fast polynomial multiplication, which takes time
essentially linear in the polynomial degree and essentially linear in the size of the
polynomial coefficients. Increasing α produces a linear increase in the polynomial
degree and does not increase the size of the coefficients. Increasing the number of
subkeys produces a linear increase in the polynomial degree and in the size of the
coefficients. The performance measurements show a close-to-linear effect of α on
the running time, and a worse-than-linear effect of the number of subkeys on the
running time. (Two possible ways to improve this scaling: first, work with lower-
precision approximations to the coefficients, either accepting approximations as
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Fig. 8.5: The number of attacked subkeys versus the running time of PRO for
several values of α.

output or using interval arithmetic to obtain rigorous bounds; second, use power-
series logarithms as in [1].) It is not difficult to extrapolate the running times for
larger attacks, although we observed some slowdowns for very large 2048-bit keys
(256 subkeys) with α = 213 because Sage ran out of RAM and began swapping.
Contrary to REA, PRO cannot output any result until the algorithm is run
completely. The accuracy parameter α should thus also be limited to feasible
running times.

Fig. 8.6: For several values of α: The number of attacked subkeys versus the
bounds produced by PRO for the master key of rank 1.

Figure 8.6 shows the bounds produced by PRO for the key with the lowest
rank, i.e., the key where each subkey has rank 1. Figure 8.7 shows the bounds
produced by PRO for an intermediate key where each subkey has rank 5. These
figures, like Figure 8.1, show that the bounds produced by PRO are better
for keys with larger ranks. In each case, for fixed α, the distance between the
log2 bounds grows linearly with the number of subkeys attacked. Halving this
distance seems to require quadrupling α in Figure 8.6 but merely doubling α in
Figure 8.7.
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Fig. 8.7: For several values of α: The number of attacked subkeys versus the
bounds produced by PRO for the master key where each subkey has rank 5.

Figure 8.8 shows the lower and upper bounds for all key ranks for α = 24,
α = 26, α = 28, and α = 210 for 64 byte-sized subkeys (and thus a 512-bit
master key). Computing all of these bounds took less than 30 seconds, less than
the time needed for preprocessing REA on just 16 byte-sized subkeys.

Fig. 8.8: Graphical representation of uniform random side-channel results on a
master key of 64 subkeys.

For 256 byte-sized subkeys (equivalent to an attack on the bytes of RSA-
2048), PRO with α = 213 produces lower and upper bounds of 0 and 65.3
(where the correct answer is 0) for the log rank of the master key where each
subkey has rank 1, and, more interestingly, reasonably tight lower and upper
bounds of 1027.82 and 1029.08 for the log rank of the master key where each
subkey has rank 5. These computations took under 5 hours. If we compare
the bounds resulting from measurement results in Figure 8.2 to the distance
in bounds produced by uniform subkey distributions in Figure 8.6, we see that
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bounds for higher ranked keys and on non-uniformly distributed subkeys are
even tighter.

9 Comparison

There are some advantages to REA. For extremely small ranks the algorithm
performs better than PRO, even if we take preprocessing time into account. On
the other hand, in side-channel attacks in which the result is so significant, the
exact rank will also be clear from the results and there is no need for a rank
estimation. For those small ranks we can enumerate to the key in under a second
and an evaluator should in any case first check whether p∗ is overwhelmingly
large.

Another advantage of REA is the ability to interrupt the algorithm to get
a result and even continue an estimation at a later time. If the algorithm has
been run and the remaining space has been stored, then continuing the algorithm
when a better estimate is necessary is easily done. This also holds for taking more
samples in EREA. If during an evaluation PRO is used and a better estimate is
wanted at a later time, the algorithm needs to be rerun with a higher α. Also,
if PRO is terminated before finishing, then there are no results. On the other
hand, if the cost of continuing REA is more than the cost of running PRO from
scratch, then this is obviously not an advantage for REA.

EREA (Section 5) is also a reason to pick REA over PRO. EREA outperforms
PRO for quick estimates (and also for very small key ranks), at least if we ignore
the initial preprocessing: Using as few as 28 samples and a 99.9% confidence level,
the estimate can be improved in very little time. Convergence of sampling has a
very fast initial convergence and it does not have the overhead of operations like
multiplication of polynomials. We see this in Figure 8.4. In this case however the
interval of which we know with 100% certainty that it contains the rank is very
large. We have not found a way to do similar sampling for PRO.

PRO has larger advantages. For one it does not need the combining of dimen-
sions to get good results. This preprocessing for REA took us over 40 seconds,
a time in which PRO already gives a good result.

Also, as is conjectured in [16], REA would perform a lot worse for AES-
256. Combining dimensions would take longer and the resulting space would be
higher dimensional. For AES-128, [18] reduces the natural 16-dimensional attack
space to 5 dimensions to get results similar to Figure 6.1. For AES-256, a 32-
dimensional attack space would be reduced to 11 dimensions if the same approach
is used. This is still a very large dimension, and REA scales very badly with the
dimension. RSA-2048 seems completely unfeasible for REA. For PRO the scaling
is much better, as shown in Figures 8.5 and 8.7. The time to calculate the bounds
for a certain α and the log difference between the bounds are only a few times
larger for AES-256 than for AES-128. This matches theoretical expectations.
Probabilities in AES-256 will on average be the squares of probabilities of AES-
128 keys. This means that the degrees of G and H approximately double. This
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causes the doubling of the time needed to calculate G and H and the number of
keys represented by each term to be squared.

The last advantage of the PRO method we wish to re-iterate is the remaining
space or grey area. With the rank estimation algorithm this can have a lot of
shapes, depending on the way the cutting points are chosen. This also means that
one cannot say anything certain about the probabilities of the keys remaining
in the interval. With PRO, as we saw in Section 7, the keys that lie within the
bounds have certain properties. Using the error margin from Section 7 we can
even give concrete probabilities which certainly lie outside of the interval. This
algorithm thus gives a lot better indication of the remaining space. As we saw
in Figure 8.2 we can adapt Algorithm 7.1 to handle all possible keys at once in
a black-box fashion, allowing the key holder to quantify the security of a strong
secret key without disclosing the key to the evaluator.
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